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The amphiphilic rhenium carbene complex Cp(CO)2-
Re=CDCH2CH2CMe3 undergoes stereospecific addition of HCl 
to produce a single diastereomer of ris-Cp(CO)2QReCHDCH2-
CH2CMe3,' but the absolute stereochemistry of the process could 
not be determined in part because rotation about the Re=C bond 
is expected to be fast.2 In the course of synthesizing a 
rotationally restricted rhenium carbene complex having a two-
carbon link between the cyclopentadienyl Iigand and the carbene 
carbon atom, we discovered an equilibrium between the 
hydroxycarbene complex (CO)2Re=C(OH)CH2CH2(V-C5H4) 
(1) and the isomeric metal acyl hydride complex trans-
(CO)2HReC(=0)CH2CH2(»75-C5H4)(2). 
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The first isolated transition metal hydroxycarbene complex 
was synthesized by Fischer in 1968 by protonation of a metal 
acyl anion.34 Metal acyl hydrides have been synthesized5 as 
models for key proposed intermediates in both hydroformyla-
tion6 and aldehyde decarbonylation.7 The equilibration of 1 and 
2 reported here constitutes the first observation of the inter-
conversion of a hydroxycarbene complex and its isomeric metal 
acyl hydride. 
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Our approach to a rotationally restricted rhenium carbene 
complex involved initial attachment of a 2-lithioethyl side chain 
to the cyclopentadiene ring of CpRe(CO)3 followed by intramo­
lecular attack of the lithium reagent on a carbonyl group 
(Scheme 1). Metalation of the cyclopentadienyl ring of CpRe-
(CO)38 followed by reaction with ethylene oxide and then tosyl 
chloride gave the crystalline tosylate (V-C5H4CH2CH2OTs)-
Re(CO)3 (3)9 (89% yield), which was converted to the corre­
sponding iodide (V-C5H4CH2CH2I)Re(CO)3 (4) (85% yield)9 

by treatment with LiI in acetone. 
Treatment of a solution of 4 in Et2O at —78 0C with 2 equiv 

of f-BuLi gave the anionic acyl metal complex Li+[(CO)2ReC-
(=0)CH2CH2(V-C5H4)]

- (5)9 as an air sensitive yellow powder 
in 48% overall yield from CpRe(CO)3. The IR spectrum (THF) 
of 5 had two bands of equal intensity at 1898 and 1819 cm"1, 
consistent with an anionic dicarbonyl complex. 
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Protonation of an aqueous solution of 5 with HCl followed 
by extraction into CH2Cl2 led to the isolation of a mixture of 
the expected hydroxycarbene complex (CO)2Re=C(OH)CH2-
CH2(^-C5H4) (1) and the metal acyl hydride complex trans-
(CO)2HReC(=0)CH2CH2(»75-C5H4) (2) as a yellow oil. Treat­
ment of this mixture of 1 and 2 with n-BuLi at —78 0C 
regenerated 5. The 1H NMR spectrum of the isolated oil in 
CD2Cl2 showed the presence of a 75:25 ratio of complexes, 
each with its own well-separated AA' patterns for cyclopenta­
dienyl protons and two triplets for the two-carbon tether.9 The 
minor species (1) had a resonance at 5 11.00 assigned to a 
hydroxycarbene proton, while the major species (2) had a 
resonance at 6 —8.69 characteristic of a metal hydride. Upon 
treatment with D2O both the hydride and hydroxyl proton 
resonances disappeared immediately. 

In the 13C NMR spectrum of the mixture of 1 and 2 in CD2-
Cl2, a resonance at 6 292.5 was assigned to the carbene carbon 
of 1 and a more intense resonance at d 234.3 was assigned to 
the acyl carbon of 2. In the IR spectrum in CH2Cl2, carbonyl 
stretching bands at 1954 and 1870 cm-1 are attributed to 1 and 
bands at 2023 and 1925 cm-1 are attributed to 2, as is a weak 
acyl band at 1615 cm-1. In THF, an OH stretch for 1 was 
observed at 3643 cm""'. 

The ratio of hydroxycarbene complex 1 to metal acyl hydride 
2 showed a strong solvent dependence. In THF-^8, hydroxy­
carbene complex 1 was the only species observed by 1H NMR; 
in acetone-cta a 91:9 1:2 mixture was seen; and in CeD6, a 50: 
50 1:2 mixture was seen. While there is no correlation of the 
equilibrium constant with solvent polarity, more of the hy­
droxycarbene is seen in the better hydrogen bonding solvents 
THF and acetone. 
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The interconversion of 1 and 2 is rapid at low temperature. 
When acetone-^6 was condensed into a CD2CI2 solution of 1 
and 2 at —78 °C, the conversion from a 25:75 ratio of 1:2 to an 
80:20 equilibrium mixture was monitored by 1H NMR spec­
troscopy at —50 0C. Within 6 min, half of the excess 2 was 
converted to 1 and a 62:38 ratio of 1 : 2 was reached. After 
45 min, an 80:20 equilibrium ratio of 1:2 was observed. 

Our observation of an acyl hydride complex in equilibrium 
with a hydroxycarbene complex differs from Fischer's report 
of (C5H5)(CO)2Re=C(OH)CH3 (6)3 for which only a hydroxy­
carbene isomer was observed. We repeated Fischer's synthesis 
of 6 and looked for evidence of an acyl hydride species. Close 
examination of the hydride region of the 1H NMR spectra of 6 
in either C6D6 (25 0C) or CD2Cl2 (-80 0C) showed no signals 
attributable to an acyl hydride. Similarly, the 13C NMR 
spectrum in C6D6 showed a resonance at d 286.7 for the carbene 
carbon of 6 and no evidence for an acyl hydride isomer. This 
implies that, in an untethered system such as 6, the hydroxy­
carbene form is appreciably more stable than the acyl hydride. 
We propose that tethering the carbene carbon to the cyclopen-
tadienyl ligand in 1 introduces significant strain which desta­
bilizes the hydroxycarbene isomer and makes it comparable in 
energy to the acyl hydride isomer. As a result, both 1 and 2 
can be observed in solution. 

Evidence for strain in 1 relative to 2 came from studies of 
the regioselective methylation products of acyl anion S. Reac­
tion of 5 with CH3I in THF gave exclusive Re methylation, 
and the methyl acyl complex (CO)2(CH3)ReC(=0)CH2CH2(?75-
C5FLt) (7)9 was isolated as a yellow oil in 43% yield. Regi­
oselective methylation of 5 at oxygen was accomplished using 
(CH3)3OBF4 in acetone. 1H NMR spectroscopy of the reaction 
mixture showed exclusive formation of methoxycarbene com­
plex (CO)2Re=C(OCH3)CH2CH2(^-C5H4) (8),9 which was 
isolated as a yellow solid in 72% yield. 
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The X-ray crystal structure of tethered methoxycarbene 
complex 8 shows that ring closure produces a moderately 
strained CpReL3 system in comparison with untethered carbene 
complexes such as (C5H5)(CO)2Re=C(OH)CH3 (6) (Figure 1). 
The alkyl tether of the cyclopentadienyl ring of 8 is bent down 
9° toward Re [Cp(centroid)-C(6)-C(5) = 171°], while in 
untethered systems the alkyl groups bend up away from the 
metal center.10 Ring strain also narrows the angle between the 

Figure 1. Structure of (CO)2Re=C(OCH3)CH2CH2(̂ -C5H4) (8). 
Selected bond lengths (A) and angles (deg): Re-C(3), 1.982(10); 
C(3)-0(3), 1.329(12); 0(3)-C(ll), 1.483(12); Re-C(3)-C(4), 118.6-
(7); Re-C(3)-0(3), 136.2(7); C(3)-C(4)-C(5), 111.8(9); C(4)-
C(5)-C(6), 111.5(8). 

Cp centroid, rhenium, and the carbene carbon atom to 111.8° 
from the 126° ideal angle for a three-legged piano stool CpReL3 
system. This angle is close to the 112.2° Cp(centroid)-Re-
acyl carbon angle seen in the four-legged piano stool complex 
^Wu-Cp(CO)2Re(COCH3)CH3." In general, four-legged piano 
stool complexes CpMLt have substantially wider L - M - L 
angles and narrower Cp(centroid)—M—L angles than related 
three-legged piano stool compounds. Thus, tethering of the 
alkyl side chain introduces strain into the three-legged piano 
stool geometry of hydroxycarbene complex 1 but leaves the 
four-legged piano stool geometry of the metal acyl hydride 
complex 2 unstrained. Overall, tethering the side chain stabilizes 
2 relative to 1 and provides a rationale for the observation of 
acyl metal hydrides only in tethered systems. 
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